UCRL- 93154
PREPRINT

CYRCULATION COPY

SUBJECT TO RECALL
IN TWO WEEK”™

HARMONICALLY EXCITED ORBITAL VARIATIONS

Tom Morgan

This paper was prepared for submittal
to the International Astronautical
Federation Congress, Stockholm,
Sweden, October 7-12, 1985

August 6, 1985

This Is a prepriat of a paper intended for publication In 2 jownal or proceedings. Since
' changes may be made before publication, this preprist is made avallable with the wa-
derstanding that it will aot be cited or reproduced without the permission of the author.



DISCILAIMER

This document was prepared as an account of work spcnsored by an agency of the
United States Government. Neither the United States Government nor the University
of California nor any of their employees, makes any warranty, express or implied, or
assumes any legal [iability or responsibility for the accuracy, completeness, or usefal-
vess of any information, apparatus, product, or process disclosed, or represents that
its ase would net infringe privately owmed rights. Reference herein to any specific
commercial products, process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or the University of California. The
views and opinlons of suthors expressed herein do not necessarily state or reflect
those of the United States Government or the University of California, and shall not
be used for advertising or product endorsement purposes.

Myt . oW
K ‘f"e y
e L - .
C g

. -1



Harmonically Excited Orbital Variations*

Thomas O. Morgan
Lawrence Livermore National Laboratory
Livermore, California

ABSTRACT

Rephrasing the equations of motion for orbital maneuvers in terms of Lagrangian generalized coordinates instead
of Newtonian rectangular cartesian coordinates can make certain harmonic terms in the orbital angular momen-
tum vector more readily apparent. In this formulation the equations of motion adopt the form of a damped
harmonic oscillator when torques are applied to the orbit in a variationally prescribed manner. The frequencies
of the oscillator equation are in some ways unexpected but can nonetheless be exploited through resonant forcing
functions to achieve large secular variations in the orbital elements. Two cases are discussed using a circular orbit
as the control case: a) large changes in orbital inclination achieved by harmonic excitation rather than one
impulsive velocity change, and b) periodic and secular changes to the longitude of the ascending node using both
stable and unstable excitation strategies.

The implications of these equations are also discussed for both artificial satellites and natural satellites. For the
former, two utilitarian orbits are suggested, each exploiting a form of harmonic excitation.

KEYWORDS _
Celestial mechanics; angular momentum; harmonic orbital oscillations; zonal harmonics; tesseral harmonics;
Halley’s comet. . -

NOMENCLATURE
A,B,C,a,b = Arbitrary constants T = Period of defined frequency
F = Force vector t = Time
H = Angular momentum vector w = Substitution variable
L Iyy 1z = Orbital moments of inertia z = Complex number
Ly I I, = Orbital products of inertia a,p = Axis coordinates for Mathieu stabil-
I = Inclination angle of satellite orbit ity map
with respect to equatorial plane ) VR ¥ = Eigenvalue solution to differential
i = V/—1; base of the imaginary num- . equation
bers ¢ = Orbital circular frequency
Jo = Bessel series coefficient ¥ = Orbital precession rate
J = Legendre series coefficient T, T2 = Natural frequency components of
k = Subscript index harmonic oscillator equation
M = Applied moment vector o = Angular velocity vector of satellite
m = Satellite mass in Eulerian coordinate system
P = Circular period of the orbit 1] = Angular velocity vector of Eulerian
T = Total orbital radius from the focal coordinates with respect to Newton-
point ian space-fixed coordinates
Ip = Earth radius
SUBSCRIPTS
(01) Initial condition (PR) Precession rate
SUPERSCRIPTS
) Differentiation with respect to time () Constant or steady state portion of in-
dicated variable
INTRODUCTION

When the concept of angular momentum is introduced into the study of orbital motion it is gencrally for one of
two purposes. 1) to assist in obtaining analytical vector solutions to the equations of motion in rectangular
coordinates or, 2) to provide a physical explanation for planar motion and the cnergy intcgral. But if the time
history of the angular momentum vector itself is utilized as a method for deriving the equations of motion in a
spherical coordinate description. unexpected insights into the consequences of harmonic terms often result.

Expressed in terms of Eulerian rotations certain natural frequencies other than the usual orbital period appear
in the generalized coordinates. These consitututc independent modal arms and can be associated with the classical

* Work pérformed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under contract
No. W-7405-ENG-48.
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notions of precession and nutation. Furthermore, since the time rate of change of angular momentum is equal to
the applied torque on an orbit, one quickly appreciates that a more cxpedicnt method of orbital maneuver might
be accomplished by a sinusoidal variation of thrust at onc of thesc frequencics rather than a single impulsive burn.

In naturally occurring trajectories, advancement of the line of nodes. or more succinctly, precession, has been
recognized as a fundamental outgrowth of a non-spherical gravitational potential field virtually from the first
rigorous mathematical description of the central force field problem. Its phase analogue, nutation, has been
discussed but more often dismissed in subsequent developments. Ehricke' introduces a three axis spherical ge-
ometry to describe impulsive velocity change events using a pitch-yaw-roll treatment. However, Ehricke's Eulerian
rotation sequence is quite different, more closely resembling in his analysis a commonly used aeroballistic coor-
dinate frame. Hansen® developed a perturbation theory for a prize winning 1831 essay on the mutual perturbation
(gegenseitige Storungen) of Jupiter and Saturn using a so-called “ideal” coordinate system. (The term ideal applies
if a derivative mapping of the direction cosines holds during transformation.) Using a single Hansen function,
called “W", rectangular space-fixed coordinates can be mapped into coordinates rigidly fixed in an osculating
orbital plane. Hansen chose to solve his equations numerically, however, which tended to disguise the underlying
harmonic content in his solutions, as well as the possibility of harmonic perturbative disturbing torques. Musen’
modified the Hansen/Eulerian description by introducing four parameters to linearize the arguments of angles
with respect to time and avoid singularities at high orbital inclination. The four parameters are not independent,
but three generalized coordinates do result from their quotient combinations. A subtle linearization occurs during
this operation, though, since the analytical solution contains Bessel function coefficients of all harmonic terms.
Only the coefficients of J, rank are addressed in the Musen solutiun, which again eliminates harmonic terms of
higher period. ’

A more direct correlation may be found in the work of Newcomb®. In his approach Laplace’s theory is restructured
using eccentric anomaly as the independent variable, and thus making any resulting series converge more rapidly
in numerical solutions. In effect he arrives at a spherical solution quite similar to Hansen’s. Once again, though,
the direction cosine mapping does not include the oscillating portion of the sinusoidal variation of the out-of-
plane motion, meaning the transformation is “non-ideal™ in Hansen's vocabulary. Nonetheless, Newcomb's theory
is a powerful tool for determination of positional information. Applications of his theory to the motions of Uranus
and Neptune are still used in nautical aimanacs today, nearly ninety years after their first publication.

In the following derivation the equation of motion will be developed by first retaining all precessional and

nutational components of the orbital progression. Then a discussion of the disturbing forces, either natural or
externally imposed follows and the consequences of certain types of perturbation are explored.

THEORY

To define the coordinate system the x-axis will be prescribed to lie along the line of nodes. The z-axis is defined
as being always normal to the orbital plane and the y-axis remains mutually perpendicular to both with the positive
direction found by use of the right hand rule. Figure 1 displays the geometry. For the purposes of simplicity only
circular orbits with constant period will be discussed in the following derivation, though more complex expressions
for period can be substituted into the equations at any point with no loss of generality.

Z-Axls To North Celestial Pole Y-
; Orbital Path

Saioltin s
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Figure 1 The geometry of the orbit showing the relationship of space fixed Newtonian coordinates (X,Y,Z)
with respect to moving Eulerian coordinates (x,y,z)
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The angular velocity vector of this system of equations is

©=(i, niusinl,% + Yeosl) )

A strong coupling is thus apparent between the periodic frequency, the advancement of the line of nodes, ¥, and
the orbital inclination I.

The inertial terms about each of the axes are now needed in order to calculate the individual components of
angular momentum. These will be called moments and products of inertia in view of their obvious solid body

kinetic analogue. They are

I, = mrisin®$t _ a)
I, = mricos?dt b)
I, = mr? c) (2)
Iy = mrisint coscin d)
L, =0 €)

The rotational form of the momentum vector is
SM=H+0QxH 3)

where the angular momentum vector is the product of the inertia tensor and the angular velocity vector. Or

H, | - Ixy ~Lx || oy
H o =]-1, Ly =1l | | @ O]
H, - lu - lyg ln 0,

The time rates of change of the inertial components are:

i,,,, = mr=(2$cos$tsin$t) a)
i, = - mPQécosdtsindt) b)
i.=0 0 ()
i.y = mrb(cos2dt — sin2pt) d)
i.=0 ' e)
As the coordinate system moves with respect to fixed inertial space it will have angular velocity components of
Q = (i. ¥sinl, Jcosl) ©)
And finally the derivatives with respect to time of the body fixed angular velocity will be
@ = (I, ysinl + ¥ icosl, & + Yeosl — ¥ isinl) )
Substituting equations (4) into equation (3) gives:
zMu = in“x + lu‘;'l - lxy‘;’y - ilyuy + (nyﬂz = n:“y) a)
M, = i,m, + Lé, ~ Lo, - I,0, + (0H ~ QH,) b) (8)
M, = L, &, + .0, + (QH, ~ OH) )

While substituting (5), (6) and (7) into (8a) yields:
M, = mi(i 2bcosdtsindt + Lsin2dt
- J)(cosztf’t - sinzti;t) Vsinl
~sindtcosdt(ysinl + ¥ i cosl) )
+ ysinl(p + eosl)
+ I cosIsindtcosdt
- \i:zcoszd;tsinl)
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Performing the same operation about the y-axis gives:
ZM, = mF((—ZJ;sin&tcosJ;t)\i;sinl
+cos3$t(|-l;sinl + ¥ icosl)
- ¢ i(coszén ~ sinzci)t)
- l.sind;tcosd'ut (10)
+ i coslsin?¢t
- \i:?sinlsin ci»toosd':t
-ié - idcosl)
And finally in the z-direction:
M, = mr'-'((;!; + ;l;cosl - |iuisinl)
+(— i sindtcosdt + § I cos?dtsinl) a1n
~ (i ysinlsin?dt + §in’Isinteosdt))

SOLUTION BY SIMPLE QUADRATURE

Equations (9), (10), (11), form a complete set of equations of motion for the total time history of an orbit.
Integrating the equations numerically would produce the orbital evolution based on various external or applied
torques. But depending on the type of excitation more cxpedicnt methods of solution are possible when certain
simplifications are considercd. Additionaily, as will be presently shown, some types of excitation create unstable
orbits and in those cases numecrical integration actually leads to erroncous results.

The first approximation to consider is the small angle formula in the inclination angle, namely

sinl = 1 (12)
cos] =1
Equations (9) and (10) now reduce to:
f::;= (i$ S %’l)sinZJst + (—% - ¥l - ﬂ’zi')coszdn + (% + ydl + ‘;—zl) a)
13)
?‘;‘g - (- ié+ gl) cos2t + (—; -l - ‘;1) sin2t + 31 - & b)

Rearranging equation (13) into the form of a damped harmonic oscillator and assuming a quasi-steady precession
rate, (=0);

fi% =Q - oos2¢t)% + dsinéti + (w + 32-)(1 ~ cos2ét)l (14)
3:“?—:'} = (- sinZJH)% - (1 + co2ét)i — (H + %z)(sinz.i,t)l (15)

Multiplying equation (15) by i and adding to (14) gives

E(M'm:, M) _ (% +igl + (M + “'72)1)(1 ~ ei2éy) (16)

The homogeneous solution to equation (16) can be immediately written in the form
1=l eM' + Ly er? (17)

where

Mo = —ib = ‘/(hinz - Qid + ¥ (18)
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Restating the radicand of the eigenvalue in a quadratic form as
(6 — @b + ¥2) = (=D (& + ¥ (19)

resolves the orbit into its component modal arms. Any orbit of such a form exhibits stable harmonic variations
in inclination angle whenever the precession rate is prograde, (in the same right hand rule sense as the angular
frequency) because the radicand in these cases is always negative. However, if the precession rate is retrograde
and greater than the angular velocity, inclination angle is an unstable variable since a positive real root always
results from the radicand. The inevitable conclusion is that inclination angle will grow rapidly with time.

In naturally occurring trajectories, the principal mechanism for producing a secular precession rate is the aspher-
icity of the geopotential field. By describing the earth’s central force field potential in the usual way as the solution
to a Legendre polynomial, then the second zonal harmonic can be identified with a torque that creates precession.
By ignoring all terms higher than second order in the Legendre solution a simple expression for the precessional

period results:
_ Td) T 2 . 20

Figure 2 is a plot of equation (20) showing precessional period as a function of orbital inclination for various
orbital radii. The precession rate is indeed retorgrade but generally only a few one-hundredths to a few one-
thousandths of one percent of the angular frequency. Hence most satellite orbits are stable in inclination angle

with two natural frequencies of
n= 2‘5 - \|l
n=
Equation (16) is now rendered in a highly suggestive form for finding a method of exciting large inclinations by

sinusoidally applied torques at onc of the natural frequencies of nutation. Rewriting the cocfficient (1 — ei¥) as
(e — ei*) produces a forcing function of

M, +iM,) z_(_ 1 ) @

mre™ = o) ~ mr \W = on%

By applying moments harmonically such that

z = @il - Ot _ g lnk — z&_)t (22)
’ k=12

THE SATELUTE ORBIT
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Figure 2 Period of orbital precession as function of orbital inclination (first-order solution; near-circular or-
bits; r = semi-major axis). (Ehricke)
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a resonance solution can be expected from equation (16). An exponential increase in nutation follows logically at
least to the extent of the two assumptions of small angles and constant precession rate.

Note that the two roots available from equation (18) are actually precessional conjugate solutions so no minimal
or maximal energy expenditure benefit is gained by using one or the other.

OTHER EXCITATION STRATEGIES
For the specific purpose of exploiting an orbital instability one excitation scheme would be to apply torques about
the nutational axis proportional to the time rate of change of the product of the inclination velocity and one half
of the second harmonic of the orbital period. Or, mathematicaily,

M, _df 1.
= at( , 026t 1) (23)
Substitution of equation (23) into (14) leads to

0=1+ (a ~ 28cos2dt)l (24)

which can immediately be recognized as Mathieu's equation. Figure 3 gives a map of the stability of Mathieu’s
equation for various values of the coefficients a and 8. Any number of specific solutions are available depending
on the values of the two Mathieu parameters. Using the problem as stated in equations (23) and (14) a satellite
orbit is exactly neutrally stable. Adding only an incremental change in the applied torque proportional to the
negative of the orbital inclination, shifts the Mathieu solution until it resides wholly in the unstable region. Now

large changes in inclination arise from small thrusts.

\ \

Figure 3 Fundamental diagram determining the stability of a system with variable elasticity. The shaded re-
gions are stable and the blank regions are unstable. (Van der Pol and Strutt.)

For comparison, this approach to increasing orbital inclination uses a proportionally smaller amount of energy
than expending force at only one point in an orbit. The price, however, is paid in the time required to effect an
orbital change. Depending on the magnitude of the applied torques, an inclination change by an instantaneous
burn will be realized within some fraction of the orbital period. Even with an intermediate, highly elliptical, orbit
maneuver the total inclination change will be accomplished on the order of one orbital period. On the other hand,
change by harmonic excitations requires a few to several tens of orbital periods. In the sense that the total integral
of the work needed for an inclination change is not path independent, the system is not conservative in the
classical sense. Once it has been disturbed, it requires an equivalent amount of work to restore the system to its

initial state as was initially absorbed to disturb it.

Expanding the analysis in the precessional direction the requirement that precession rate remain a constant will
now be relaxed.

Multiplying equation (14) by i and adding it directly to equation (13) gives:

?LM-T;%ML) = G +i (&i + gl) + (.H, + %z)l)(l - e2by (25)
The homogeneous portion of the imaginary section of equation (25) can be written:

0=4éi+31 (26)



By a simple substitution of w=, and separation of variables quadrature, equation (26) can be integrated directly
with the result

Inl=C 27

Equation (27) demonstrates the strong coupling between all three of the Euler angle coordinates. In fact the
former condition of maintaining a constant § during change can only be maintained if both 1 and  are harmonic

with identical period, but phase-shifted by 90°.

One final form of the equation shall be invoked. In the case of a constant inclination angle, equation (10) can be
written:

M TN P oo o
If moments are applied about the y-axis proportional to the longitude of the ascending node, y, when the circular
frequency is much greater than the precessional frequency then:

:——r,tl”—m = Ay = Y(cos*t) — b Psin2ét (29)

which once again is a damped harmonic oscillator equation with higher frequency modulating functions.

CONCLUSIONS

The consequences of the deeply embedded harmonic terms within the orbital equations of motion demonstrated
above provide the opportunity for achieving trajectories for artificial satellites not widely considered at present.
Twao in particular will be discussed, and two suggestions about natural orbits will be mentioned as well.

1) Psi-Couplin
With the use of the substitution, x=cos 2$t equation (29) may be restructured in the form

P+ S (-xi)+Aav=0 | 30)

For certain values of §s it has been shown that some higher period modulating frequencies may be ignored when
considering one of two predominant frequencies in a two mode system.® This assumption reduces equation (30)
to an undamped harmonic oscillator with the natural frequency of VA.

In general there is no restriction on equation (30) other than the physical possibility of applying torques to the
orbit exactly proportional to the absolute angle of the argument of the ascending node. When the orbital period
is much shorter than the precessional period, though, this restriction presents no great obstacle, since the Fourier
components of impulses applied at the nodal line are also harmonic in the natural frequency. So in theory, at least
VA could be made precisely equal to twenty-four hours. Such a scheme will yield a psi-synchronous orbit (so
named for the usual classical mechanics variable specifying precession angle). Twice every twenty-four hours the
orbit retraces an exact footprint over the surface of the earth. These two turning longitudes can be chosen from
the initial conditions to correspond with specific locations of communication or remote sensing importance in
which the solar aspect angle is required to be the same over long periods of time. Furthermore, this synchronous
solution is not dependent on the orbital radius, provided the proper steady state value of torque is applied.

2) Theta Coupling

In the same manner as psi-synchronous coupling is achieved a nutational frequency is excited as described by
equations (17)(22). Depending on the precession rate, the satellite orbit may be made to oscillate between two
bounding latitudes over the Earth while covering specific portions of the same longitude. Figure 4 shows a generic
pattern established by the angular momentum vector with this type of excitation. Essentially, the orbit wobbles
about the equatorial plane with two orthonormal frequencies tailored by the character of the applied moments.

3) The Zonal Harmonics
As shown throughout this analysis, but specifically in equations (9), (10), (11), many coupling terms exist between
the Eulerian variables of an orbit. Each of these variables will have sinusoidal terms as well as secular terms. In
some instances, products of these sinusoidal terms lead to constant values with secondary sinusoidal terms of
higher frequency. For example, if the precession and nutation rates are both sinusoidal the term ysinl(¢ + ycosl)

in equation (9) will be

¥ sin(at) sin(bt)(é — ¥ sin(at) cos(sin bt)) (31)
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Figure 4 Time history of the angular momentum vector with two modal arm motion.

Sinusoidal functions with arguments that are in tumn sinusoidal functions can be approximated closely by Bessel
Series. Applying this technique to equation (31) gives Bessel functions with constants and overtones of the
fundamental frequency at: (a—b), 2(a—b), 3(a—b).. . . . The constant values accelerate the precessional velocity
slightly. But the precessional velocity is used to calculate, by Legendre functions, both the zonal and tesseral
harmonics of the Earth’s geoid from observed satellite perturbations. The Legendre coefficients therefore may
be incorporating part of a secular advance which is really due to the particular characteristic of the orbit rather

than the nature of the earth's geoid.

A secondary application of this statement applics to natural satellites as well. The unaccounted for discrepancy
between the precession of Mercury's orbit and rates predicted by Newton's law (even with modifications made by

General Relativity) might be explained by this result.

4) Halley’s Comet

While executing that portion of its trajectory near the periapsis, Halley's comet experiences a net thrust force.
The force is caused by material being ejected from the surface of the comet as its constituent ices sublime when
exposed to solar radiation. Theoretically, these forces should lie exactly in the orbital plane, producing no out-
of-plane thrusts. Practically, however, many effects modify the actual thrust vector. These include: variations in
the albedo of Halley’s comet across its surface, interference of the solar wind, asphericity of the comet itself and
asphericity of both the solar potential field and its luminosity with solar latitude.

The actual solar radiation received at the surface of the comet is a function of the cosine of the true anomaly
while the vector component of the out-of-plane thrust is a function of the sine of the true anomaly and the
inclination angle as shown in Figure 5. The product of the force term components then, is:

F = B,sinbtcostsinl
which can be restated by trigonometric identity as
- % (sin2 )sinl 2

Note that if equation (32) is substituted into equation (13) the forcing function occurs at a resonance frequency
of the equation. At least to the extent of the small angle approximation certain conditions on the thrust vector
could lead to large changes in the inclination angle. The same is true for total precession angle. Hence it may be
possible Halley’s comet began with an orbit quite different from its present day position. As a matter of speculation
one may even wonder if its retrograde orbit, unusual among the other objects of the solar system, may not in
some way have originated as a prograde orbit which over time experienced a large unstable change in inclination
angle.
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Figure 5§ Orbital torque on Halley’s comet as a function of two parameters, true anomaly and inclination
angle.
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